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The behaviour of the entropy numbers ek (id: ln
p � ln

q), 0<p<q��, is well
known (up to multiplicative constants independent of n and k), except in the quasi-
Banach case 0<p<1 for ``medium size'' k, i.e., when log n�k�n, where only an
upper estimate is available so far. We close this gap by proving the lower estimate
ek(id: ln

p � ln
q)�c(log(n�k+1)�k)1�p&1�q for all 0<p<q�� and log n�k�n, with

some constant c>0 depending only on p. � 2001 Academic Press
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Let T: X � Y be a (bounded linear) operator from a quasi-Banach space
X into another quasi-Banach space Y. The k th (dyadic) entropy number of
T is defined as

ek (T )=inf[=>0 : T(BX) can be covered by 2k&1 balls of radius = in Y],

where BX denotes the closed unit ball in X. Entropy numbers are closely
related to the concept of metric entropy developed by Kolmogorov in the
1930s. For the basic properties of entropy numbers and their use in
applications to eigenvalue and compactness problems we refer to the
monographs by Ko� nig [5], Pietsch [6], Carl and Stephani [1], Edmunds
and Triebel [2], Triebel [8], and the references given therein.

In many applications certain discretization techniques are used, which
allow to reduce an infinite dimensional problem to a finite dimensional
one. Therefore it is essential to have precise information on the entropy
numbers of, say, the identity operators id: ln

p � ln
q , 0<p�q��. Here

ln
p stands as usual for the space Rn equipped with the quasi-norm

&x&p=(�n
k=1 |xk | p)1�p for 0<p<� and &x&p=sup1�k�n |xk | for p=�,

which is even a norm for p�1. In the sequel, all constants are positive real
numbers which may depend on the parameters p and q but not on the
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integers n and k. Logarithms are taken with respect to the base 2,
log=log2 .

Schu� tt [7] proved in 1984 (see also [5, 3.c.8]) for 1�p�q�� the
inequality

1 if 1�k�log n

ek (id: ln
p � ln

q)�c }{\log(n�k+1)
k +

1�p&1�q

if log n�k�n (1)

2&(k&1)�nn1�q&1�p if k�n.

He also showed that this is sharp, meaning that there is a similar lower
estimate for the entropy numbers (of course, with another constant). Next,
in 1996 Triebel and Edmunds [2, Proposition 3.2.2] extended Schu� tt's
upper estimate to the quasi-Banach case 0<p�q��, and finally in 1997
Triebel [8, Theorem 7.3] showed that the lower estimate also remains
valid in this case, provided k is either ``small'' (1�k�log n) or ``large''
(k�n). For ``medium'' k no nontrivial lower estimate seems to be known.
We will now close this gap.

In the proof of the following theorem we use the Hamming distance on
a suitable set. This idea comes from the recent paper by Gao [3], I am
grateful to J. Creutzig for drawing my attention to Gao's article. Moreover,
I am indebted to an anonymous referee of this note for pointing out a more
standard proof via interpolation, a sketch will be given in Remark 3.
However, our direct combinatorial proof has the advantage that it works
for all possible values of the parameters 0<p<q�� simultaneously.

Theorem. Let 0<p<q��. Then there is a constant c>0 such that for
all n, k # N with log n�k�n the lower estimate

ek (id: ln
p � ln

q)�c \log(n�k+1)
k +

1�p&1�q

(2)

holds.

Proof. For arbitrary integers n, m # N with n�4 and 1�m� n
4 consider

the set

S :={x=(xj) # [&1, 0, 1]n : :
n

j=1

|x j |=2m= .
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Obviously S has cardinality

*S=\ n
2m+ } 22m

and the set (2m)&1�p S is contained in the unit sphere of ln
p . Denote by h

the Hamming distance on S,

h(x, y)=*[ j : xj { yj].

Then it is easily verified that, for every fixed x # S,

*[ y # S : h(x, y)�m]�\ n
m+ } 3m.

Indeed, all elements y # S with h(x, y)�m can be obtained as follows. First
take any subset J�[1, ..., n] of cardinality m, then set yj :=xj for j � J and
choose yj # [&1, 0, 1] arbitrarily for j # J.

Now let A�S be any subset of S of cardinality at most a :=( n
2m)�( n

m).
The estimate

*[ y # S : _x # A with h(x, y)�m]�*A } \ n
m+ } 3m

�\ n
2m+ } 3m<*S

shows that one can find an element y # S with h(x, y)>m for all x # A.
Therefore one can inductively construct a subset A�S with *A>a and
the property h(x, y)>m for any two distinct elements x, y # A, whence
&x& y&q>m1�q. Therefore we have found a subset of the unit ball of ln

p ,
namely the set (2m)&1�p A, of cardinality larger than a, whose elements
have mutual ln

q -distance &x& y&q>= :=(2m)&1�p m1�q. This implies, if we
set k :=[log a], that

ek (id: ln
p � ln

q)�=�2=c1m1�q&1�p,

where the constant c1=2&(1+1�p) depends only on p. By definition of a we
have

a=
\ n

2m+
\ n

m+
=

m! (n&m)!
(2m)! (n&2m)!

= `
m

j=1

n&2m+ j
m+ j

,
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and since the function f (x)= n&2m+x
m+x is decreasing for x>0, it follows that

( n&m
2m )m�a�( n&2m

m )m. Therefore we get

c2m log
n
m

�k�m log
n
m

with some constant c2>0 independent on n and m. Finally observe that
the function y=x log n

x is strictly increasing on [1, n
4] and maps this inter-

val onto [log n, n
2], whence its inverse function exists on the latter interval,

and it is easy to check that then x� y
log(n�y) . This shows that

ek (id: ln
p � ln

q)�c \log(n�k+1)
k +

1�p&1�q

whenever log n�k�
c2 n
2

.

For c2n�2�k�n this inequality follows from the monotonicity of entropy
numbers and the lower estimate en (id: ln

p � ln
q)�cn1�q&1�p. The proof is

finished.

Remark 1. It is obvious from the proof that (2) holds for complex
spaces, too.

Remark 2. The constant c in (2) may in fact be chosen independently
of q, as the proof shows. The same is true for the upper estimate (1); see
[2, Remark 2, p. 101].

Remark 3. Finally we sketch the above mentioned alternative (more
standard) proof of the theorem via interpolation, following an observation
of a referee. The well-known behaviour under interpolation of entropy
numbers of operators between Banach spaces (see, e.g., [6, Chap. 12]) has
recently been extended in [4, Sect. 3.2] to operators between quasi-Banach
spaces. This allows to derive the case 0<p<1 in the lower estimate (2)
from the known cases in (1) and (2). For simplicity of notation let id n

p, q be
the identity from ln

p into ln
q , moreover we set f (n, k) := log(n�k+1)

k .
In a first step let 1<q��, and define 0<%<1 by 1= 1&%

q + %
p . Using

the lower estimate (2) for the identity id n
1, q we obtain by interpolation, for

arbitrary integers n, k # N with log n�k�n,

c1 f (n, k)1&1�q�ek (id n
1, q)�c2 & id n

q, q &1&% ek (id n
p, q)%=c2 ek (id n

p, q)%,

where the constants ci are independent of k and n. Observing that
1& 1

q=%( 1
p& 1

q) this implies the desired lower estimate

ek (id n
p, q)�cf (n, k)1�p&1�q.
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In a second step we consider the case 0<q�1, where we define 0<'<1
by 1

2= 1&'
� + '

q . The just proved lower estimate for the identity id n
p, 2 , the

known upper estimate for id n
p, � , and interpolation imply

c3 f (n, k)1�p&1�2�e2k (id n
p, 2)�c4 ek (id n

p, �)1&' ek (id n
p, q)'

�c5 f (n, k) (1&')�p ek (id n
p, q)',

again with constants ci independent of k and n. Since 1
p& 1

2& 1&'
p =

' ( 1
p& 1

q), this yields the lower estimate ek (id n
p, q)�c f (n, k)1�p&1�q in this

case, too.
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